Bayesian Sequential Detection with Phase-Distributed Change Time and Nonlinear Penalty -- A POMDP Approach
نویسنده
چکیده
We show that the optimal decision policy for several types of Bayesian sequential detection problems has a threshold switching curve structure on the space of posterior distributions. This is established by using lattice programming and stochastic orders in a partially observed Markov decision process (POMDP) framework. A stochastic gradient algorithm is presented to estimate the optimal linear approximation to this threshold curve. We illustrate these results by first considering quickest time detection with phase-type distributed change time and a variance stopping penalty. Then it is proved that the threshold switching curve also arises in several other Bayesian decision problems such as quickest transient detection, exponential delay (risk-sensitive) penalties, stopping time problems in social learning, and multi-agent scheduling in a changing world. Using Blackwell dominance, it is shown that for dynamic decision making problems, the optimal decision policy is lower bounded by a myopic policy. Finally, it is shown how the achievable cost of the optimal decision policy varies with change time distribution by imposing a partial order on transition matrices.
منابع مشابه
Bayesian Sequential Detection With Phase-Distributed Change Time and Nonlinear Penalty—A POMDP Lattice Programming Approach
We show that the optimal decision policy for several types of Bayesian sequential detection problems has a threshold switching curve structure on the space of posterior distributions. This is established by using lattice programming and stochastic orders in a partially observed Markov decision process (POMDP) framework. A stochastic gradient algorithm is presented to estimate the optimal linear...
متن کاملدربارۀ شناسایی بیزیِ دنبالهای نقطۀ تغییر
The problems of sequential change-point have several important applications in quality control, signal processing, and failure detection in industry and finance and signal detection. We discuss a Bayesian approach in the context of statistical process control: at an unknown time τ, the process behavior changes and the distribution of the data changes from p0 to p1. Two cases are consi...
متن کاملBayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کاملBayesian Estimation of Change Point in Phase One Risk Adjusted Control Charts
Use of risk adjusted control charts for monitoring patients’ surgical outcomes is now popular.These charts are developed based on considering the patient’s pre-operation risks. Change point detection is a crucial problem in statistical process control (SPC).It helpsthe managers toanalyzeroot causes of out-of-control conditions more effectively. Since the control chart signals do not necessarily...
متن کاملA Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot
We address the problem of online path planning for optimal sensing with a mobile robot. The objective of the robot is to learn the most about its pose and the environment given time constraints. We use a POMDP with a utility function that depends on the belief state to model the finite horizon planning problem. We replan as the robot progresses throughout the environment. The POMDP is highdimen...
متن کامل